

Team Number 57

Client / Advisor
Dr. Ajjarapu

Team Members/Roles
Thomas Coleman – Team Leader

Andrew Chaney – Project Engineer
Daniel Riley – Assistant Project Engineer/Editor

Kenneth Prell – Assistant Project Engineer/Document Architect

Team Email
sdmay20-57@iastate.edu

Team Website
http://sdmay20-57.sd.ece.iastate.edu/

Revised: Date/Version
April 25, 2020 – Version 4

Impact of High Photo-Voltaic
Penetration on Distribution

Systems

FINAL REPORT

SDMAY20-57 1

Engineering Standards and Design Practices

The addition of distributed and spot PV generation to distribution systems causes changes in
voltage profile and power flow. Voltages must be maintained between 0.95 and 1.05 per unit,
currents in distribution lines must not exceed rated ampacity of the line, and KVA ratings of the
transformers shall not be violated during operation of the system.

Summary of Requirements

Design a simulation of the IEEE 34 node and 123 node test feeders that will produce useful data
about additional penetration of photo-voltaic cells.

Design the simulation where photo-voltaic cell placement will be feasible for useful distribution.

Observe all distribution system limitations when designing our simulation.

Minimize reverse powering the transmission system since there is not a set method to measure the
reverse flow.

Applicable Courses from Iowa State University Curriculum

MATH 207 – Linear Algebra

EE 230 – Electronic Systems and Circuits

EE 303 – Energy Systems and Power Electronics

EE 452 – Electrical Machines and Power Electronic Devices

EE 455 – Introduction to Energy Distribution Systems

EE 456 – Power Systems Analysis I

EE 457 – Power Systems Analysis II

EE 458 – Economic Systems for Electric Power Planning

New Skills/Knowledge acquired that was not taught in courses

Not officially acquired from ISU curriculum during our tenure: familiarization with the program
OpenDSS.

Executive Summary

SDMAY20-57 2

Table of Contents
1 Introduction 5

1.1 Acknowledgement 5

1.2 Problem and Project Statement 5

1.3 Operational Environment 5

1.4 Requirements 5

1.5 Intended Users and Uses 5

1.6 Assumptions and Limitations 6

1.7 Expected End Product and Deliverables 6

2 Specifications and Analysis 6

2.1 Proposed Design 6

2.2 Design Analysis 7

2.3 Development Process 7

3. Statement of Work 8

3.1 Previous Work and Literature 8

3.2 Technology Considerations 8

3.3 Task Decomposition 9

3.4 Possible Risks and Risk Management 11

3.5 Project Proposed Milestones and Evaluation Criteria 11

3.6 Project Tracking Procedures 12

3.7 Expected Results and Validation 12

4. Project Timeline, Estimated Resources, and Challenges 13

4.1 Project Timeline 13

4.2 Personnel Effort Requirements 15

4.3 Other Resource Requirements 16

4.4 Financial Requirements 16

5. Testing and Implementation 16

5.1 Interface Specifications 16

5.2 Hardware and Software 16

5.3 Functional Testing 17

5.4 Non-Functional Testing 17

5.5 Process 17

SDMAY20-57 3

5.6 Results 17

6. Closing Material 21

6.1 Conclusion 21

6.2 References 22

Appendix I: Operation Manual 23

MATLAB Control of OpenDSS 23

Appendix II: Initial goals 24

Appendix III: Code 24

MATLAB Code 24

createMeters.m 24

createMonitors.m 25

getBusNumbers.m 26

getMonitorData.m 26

distloadGen.m 27

distloadMod.m 30

distPVgen.m 31

DSSStartup.m 34

inputdata.m 34

loadcsvConverter.m 36

lossCalc.m 37

OpenDSScontroller.m 38

OpenDSScontroller123Node.m 41

spotloadgen.m 44

spotPVgen.m 47

spotPVgen123Node.m 50

MATLAB code for optimization 54

OpendDSSController.m 54

Optimization.m 57

GetMonitorData.m 60

CreatePV.m 61

Losscalc.m 62

SDMAY20-57 4

List of figures/tables/symbols/definitions

Figure 4-1 – Fall 2019 Gantt Chart 13

Figure 4-2 – Spring 2020 Gantt Chart 14

Table 4-1 – Task Requirements 15

Figure 5-1 – 34-node bus 832 voltage profile with different % PV 19

Figure 5-2 – 123-node % PV injection used as complete voltage regulation 20

Figure 5-3 – 123-node MWh losses 21

Figure 5-4 – 123-node MVARh losses 21

Figure 5-5 – 34-node optimization results 22

SDMAY20-57 5

1 Introduction

1.1 ACKNOWLEDGEMENT

We would like to begin by thanking Alok Bharati, a graduate student of Dr. Ajjarapu. Throughout
our project, Mr. Bharati has provided invaluable assistance. This came in the form of providing
literature to begin the project, troubleshooting our early designs, and guiding the direction of our
project.

1.2 PROBLEM AND PROJECT STATEMENT

Climate concerns as well as economic incentives in the form of government subsidies have made
solar energy increasingly attractive for both utilities and private consumers. Whereas utilities can
better regulate power distribution to avoid harming their transmission networks, private solar cells
often cause issues on distribution networks by reducing power quality. This reduced power quality
leads to higher energy usage as well as degradation of these networks. Utilities prefer to avoid this,
and as such will perform analyses to improve the transition of solar power into their networks.

The goal of our project is to establish a simulation model which models a distribution network
given nameplate data from the utility company managing power in a given area, and then identifies
weaknesses within the system. The simulation will be generalized, with specific examples (IEEE
distribution system test feeders) being tested to ensure model accuracy. The model itself aims only
to simulate a distribution network, but those using it will then be able to draw conclusions on
necessary changes. We have attempted to use realistic networks with the aim of providing general
advice.

1.3 OPERATIONAL ENVIRONMENT

Our project solely focuses on the simulation of a distribution system with penetration of photo-
voltaic cells. As such, discussion of an operational environment is not applicable to our scope.

1.4 REQUIREMENTS

 Processing power for OpenDSS simulations
 Transmission Network expertise and assistance
 Real world transmission network data to simulate
 Solar PV simulation implements power injection and voltage regulation

1.5 INTENDED USERS AND USES

The intended user of this project is utility companies working on integration of large percentage
photo-voltaic production. The utility will then use our findings to understand the effect of
integration of distributed (consumer owned) solar, or community (utility owned) solar into their
distribution system, as well as recommended changes to their operation. With this information,
they can choose the most effective method of loss reduction and voltage regulation based on
method of integration and expected penetration level.

SDMAY20-57 6

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions

- Distributed load on a line is modeled as one half of the load attached to each end of the
connecting distribution line.

- Team will coordinate with the project advisor to determine the scope of the project.

- Team will use provided software to model the distribution system.

Limitations

- System must operate within given distribution limitations in order to give legitimate data and
accurate recommendations.

- No budget is required for this project as OpenDSS (a free open source library) will be the only
program used.

- There will be no tests performed directly on the transmission network or solar cell components.
The team will rely on information provided in IEEE Test Feeder cases.

- Modeled system must not be so large (1000+ nodes) as to strain our processing power.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

The product to be delivered to our clients is a detailed report of findings found through our
simulation. This report shall include all data gained while simulating the distribution system and
any recommendations utility operators on where to add photo-voltaic cells (residential vs.
community) and how to control them (MW injection vs. voltage regulation) for optimal power
flow. The delivery date for this deliverable shall be 26 April 2020.

2 Specifications and Analysis

2.1 PROPOSED DESIGN

Final Design Components

- Familiarized ourselves with the knowledge required by looking at simplified subsystems
exhibiting the same type of behavior that will be encountered when looking at our final simulation.

- Created a simple solver in MATLAB for the iterative process required to solve our distribution
systems. This solver operated on the subsystem discussed above and is used only for research’ sake.

- Transferred the knowledge gained from MATLAB to OpenDSS in order to solve more complex
simulations given by real distribution systems. This required expanding beyond the subsystem to
an entire system that contains many of these subsystems.

- Created MATLAB scripts for data input into OpenDSS for the large systems being analyzed.

- Implemented load shape characteristics to model full day variations in demand.

- Implemented addition of distributed solar generation corresponding to maximum system loading.
Solar is implemented as having capacity equal to a percentage of the real loading at a given node,
with inverter KVA rating equal to the real power rating of the solar.

- Analyzed 34-node system with solar inverters operating in 3 modes of operation: unity power
factor, constant power factor of .85, and constant KVAR injection mode.

SDMAY20-57 7

- Sizing and setting of community solar for the 34-node system.

- Implemented power-flow in MATLAB for the purpose of optimization.

- Determined optimal community solar size for the 34-node system that would maximize system
loss reduction.

- Simulated 123-node system with loadshape data, extension of distributed solar analysis performed
for 34-node system.

- Determined minimum % PV penetration needed for voltage control without use of voltage
regulators in constant KVAR injection mode.

- Recommended mode of operation for distributed solar in systems similar to 123-node system,
notably low voltage, relatively short distance distribution systems with unregulated bus voltages
between 1.0 and 0.9 in per unit quantities.

- Recommended procedure for sizing and setting of spot solar loading in rural feeder systems
similar to 34-node system.

2.2 DESIGN ANALYSIS

Though our project has changed forms from Alliant Energy’s original intentions, we have still
accomplished the essence of this project. We have modified the 34-node system to implement
community solar in order to minimize system losses using an optimization process that can be
adjusted and used on other systems. We modeled a larger 123-node system, which is closer to the
size of a small real-world model. This gave us the opportunity to see results that will likely be
encountered during our careers as electrical engineers.

Getting the power loss to decrease by 9.01% after adding solar to node 832 was a major strength.
However, because of the control method we chose to utilize we found a weakness in that it had no
impact on the nodes that were already out-of-specification with regards to their voltage profiles.
Another weakness is that by trying to implement distributed solar to both the primary and
secondary injection sites it would increase the power loss of the system. Overall, it can be
concluded that constant power factor, while being a viable method of control, may not be the
optimal type depending on the goal and other methods should be studied by future teams.

2.3 DEVELOPMENT PROCESS

We are implementing the Agile process. Using this process will help us effectively organize our
workloads evenly and provide accountability for each team member according to their roles. Agile
will also aid in preventing an overload of our team by allowing us the ability to roll over
assignments in the event of non-completion.

SDMAY20-57 8

3. Statement of Work

3.1 PREVIOUS WORK AND LITERATURE

Transmission network modelling is not unique to our project and has been performed by many
utility companies both testing their current networks and prior to completing upgrades to their
systems. These are of course proprietary, and thus we are unable to use them in preparing our
project. However, many resources exist which allow engineers to test their understanding. We first
worked extensively with a feeder example given in the textbook [1]. This test feeder contained 4
nodes and introduced us to basic concepts of feeder networks. Next, we worked on the IEEE 34-
node Test Feeder. IEEE releases test feeders for engineers to practice their skills with new software
or algorithms. These come with solutions attached, so we could check our work. The final network
we will be working on is the IEEE 123 node test feeder that is representative of a low-voltage
distribution feeder. This provides us with a medium scale system that provides a relatively stable
voltage profile for analysis of the effects of PV on voltage regulation without the use of traditional
tap changing transformers.

3.2 TECHNOLOGY CONSIDERATIONS

OpenDSS is an open-source software designed to give power-flow solutions for distribution
networks. It is a powerful tool that directly relates to this project since we are looking at the effects
of penetration of photo-voltaic cells on the distribution system (power-flow solutions).

A strength of this software is its capability to solve complex power-flow solutions. Since our study
consists of hundreds of buses, OpenDSS will be invaluable in obtaining the data and testing how
we can best implement and control photo-voltaic penetration. Another strength is that the
software is open source, meaning that there is no cost for its acquisition, and it is continuously
being improved in real-time.

One weakness associated with this software is a technical barrier to entry. There is no official
tutorial on general operation, or any simple examples given as an aid for understanding. This then
requires additional time needed to understand the program. However, this has helped to ensure
that we understand the fine details regarding the software’s operation.

MATLAB is used as a controller for OpenDSS, as well as for changing the system model and data
interpretation. Each solution set requires iterating over 1-100% (with 1% step size) solar PV
penetration, and each iteration is associated with changing at least one file in the OpenDSS model.
Importing the data into MATLAB requires reading data from approximately twice as many files as
there are nodes in the system. For larger systems, this results in significant overhead in runtime. A
solution set containing 100 power flow solutions can take several minutes to produce, and larger
solution sets take correspondingly longer.

SDMAY20-57 9

3.3 TASK DECOMPOSITION

Textbook research

 Preliminary research on structure of 4-node problem
 Review power concepts

Our project began with the building of preliminary knowledge. We were assigned reading from a
textbook [1] given by Dr. Ajjarapu. This graduate level textbook covers many overarching topics in
transmission networks. Our first subtask here was familiarizing ourselves with the concepts in
power relevant to our project. We all had some power experience, so this was more of a review than
new material.

Handwritten 4-node network

 Understand problem geometry
 Understand solution
 Complete first iteration of problem by hand ourselves

The textbook contains many examples to assist in learning, and we focused on a particular
problem, the modeling of a 4-node distribution feeder. To begin with, we aimed to understand the
particular geometry of the problem with relation to the review we had done in the first main task.
The example provided a solution, which we went through next, making sure we understood fully
what was being done in each step, and why. Lastly, we solved the problem by hand ourselves,
checking for accuracy with the textbook. This problem also had a secondary version where a
voltage regulator was added to increase system stability. We repeated all the above steps again for
this complicated system.

MATLAB 4-node network

 Convert data into declarations
 Convert equations into MATLAB readable form
 Check for accuracy, change code where necessary
 Add voltage regulator
 Check for accuracy again

Once we had completed our calculations by hand, we then moved onto solving it with MATLAB. A
lot of the program code was dedicated to declarations, inputting data on the line, transformer, and
load specifications. The next logical step was inputting the actual math used to solve our problem.
This math was iterative, and a large part of the function was a loop. Once we had completed the
basic feeder calculations, we added the voltage regulator.

OpenDSS 4-node network

 Learn OpenDSS syntax and commands
 Convert book problem into OpenDSS format
 Check results for accuracy, fix where necessary
 Convert regulator parameters as per book into OpenDSS format
 Check simulation against expected answers

SDMAY20-57 10

Finally, we had finished preparatory work and could begin using the software we would be using
for the rest of the project, OpenDSS. We started here by learning the basic syntax and command
format of OpenDSS through open source documentation as well as a lecture brought to us by ISU
Faculty, Dr. Wang. Once we had familiarized ourselves, we implemented the 4-node problem into
OpenDSS. In simulating, we checked for accuracy against the book’s solution. We at first had an
issue, which was found to be us unnecessarily adjusting input variables – OpenDSS would handle
this itself when simulating. As before, we then redid the problem with the voltage regulator added.
We then checked this against expected solutions and concluded this task.

34-node network

 Use MATLAB scripts to input data into OpenDSS
 Simulate the network
 Evaluate and correct solution
 Observe system response with a variable 24-hour load period
 Inject PV into the network
 Test the different methods and control modes of PV to determine an optimal

solution

Next, we will continue to build upon our OpenDSS knowledge by completing the simulation of a
more advanced network – a 34-node distribution feeder. This example is provided to us by IEEE, for
students to test themselves. We will again begin by converting the data into a form that is readable
by OpenDSS. As this is a larger network, we chose to create MATLAB scripts that would read from
a .csv file to automatically read the system data. Once data has been received by OpenDSS, we will
simulate the system and observe the values throughout the network.

The most distant node had a low out-of-specification value; we reported this to our advisor. Our
response to this low voltage condition will be to add capacitors to bring the node back within
specifications. We then replaced the capacitors with the intended photo-voltaic cells and saw how
we could control them to regulate voltage and power delivery. We then observed how the system
reacts over a variable 24-hour load period.

123-Node Network

 Adjust MATLAB scripts to input data into OpenDSS
 Simulate the network
 Evaluate the solutions (Unity, Constant .85 PF, Constant kVar)
 Observe system response of a variable 24-hour load period

With the 34-node test case complete, we moved to simulating larger feeder networks. We began
this by adjusting the same MATLAB scripts used for the 34-node network to work on this system.
Once our data input scripts are working as intended, we moved to troubleshooting run parameters
of the system. For example, a centerpiece of our simulation was a controller in MATLAB, which
controlled the interface between MATLAB and OpenDSS. Following troubleshooting, we simulated
the system over a 24-hour loadshape and analyzed our results.

The 123 Node test case has a flatter voltage profile than the 34-node test case, which makes it a
better candidate for voltage regulation via distributed solar. Different levels of inverter KVAR

SDMAY20-57 11

injection were tested to determine the minimum voltage penetration to allow traditional voltage
regulators to be removed. Lower percentages of KVAR injection were tested to find at what point
voltage regulation could be accomplished while reserving only 44% of inverter capacity for KVAR
injection, as well as the minimum KVAR injection percentage at 100% solar PV penetration to
maintain voltage within 0.95-1.05 per unit quantities.

34 Node Optimization

 Write power-flow in MATLAB
 Determine PV size at each node from results
 Find maximum loss reduction node (primary)and most out-of-specification voltage

node (secondary)
 Place PV size of primary node as a limit and adjust from 100% to 0% between

primary and secondary nodes

The Optimization process for the 34-node system is a process outlined in articles [1] and [2], both of
which can be accessed via the IEEE Xplore digital library. For our simulation we decided to work
with a constant power factor of 0.85. The first step in the process was to use the base data and run
the power-flow in MATLAB to determine the size of the PV that should be added to each node
within the system. From that data, we calculated which node within the system would be optimal
based on it having the maximum loss reduction. This node became the primary PV injection site.
The next step was to calculate which node had the worst out-of-specification voltage. This became
the secondary PV injection site. With both sites identified, we started adjusting the PV that would
be added at the primary site. For the purposes of our project it quickly became apparent that
adding any PV into the secondary injection site would cause additional losses in the system and the
voltage profile at the secondary site wasn’t going to be brought into specifications due to the
method of our testing. Testing could be expanded to include different types of control such as
constant KVAR injection for voltage profile improvement.

3.4 POSSIBLE RISKS AND RISK MANAGEMENT

Due to the effects of the COVID-19 pandemic, team and advisor meetings are held remotely where
possible, and MATLAB and OpenDSS scripts have been updated to allow them to be run on
personal computers rather than senior design lab computers.

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

 Textbook reading to understand distribution systems - September 16, 2019
o Do we understand the basics of transmission lines?

 Hand calculations for 4-node example – September 22, 2019
o Do our results match given solutions?

 MATLAB 4-node example – September 29, 2019
o Do the calculations match given solutions?

 OpenDSS 4-node example – November 10, 2019
o Does the simulation match the given solution?

 34-node example OpenDSS initial solution – November 24, 2019
o Does the simulation match the IEEE solution?

 Synthetic network initial solution – November 24, 2019

SDMAY20-57 12

o Does the simulation behave realistically?
 Observe 34-node example over a 24-hour load period – November 24, 2019

o Does variable load affect system operation? Compare to real life system.
 Add photo-voltaic penetration to 34-node – December 8, 2019

o Does PV reduce load on substation? Analyze effects.
 Observe 123 node system over a 24-hour load period – February, 2020

o Does variable load affect system operation? Compare to real life system.
 Model IEEE 123 Node Test Feeder (Data input, loadshape, analysis) – April 2020

o How does the new system compare to the 34 node system? Does this system get a
different recommendation for ideal operation?

 Optimize 34-node spot PV implementation – April, 2020
o Does the recommended system use PV placement effectively to produce minimum

system loss?

3.6 PROJECT TRACKING PROCEDURES

Our team used bi-weekly reports to track our progress. These reports include:

 Overall weekly summary
 Past weeks accomplishments
 Issues
 Individual contributions
 Plans for next week
 Summary of meeting with Dr. Ajjarapu and Alok Bharati

We are also utilizing Microsoft Teams as a means for document sharing and progress tracking.

Github is used as a code repository.

3.7 EXPECTED RESULTS AND VALIDATION

The outcome of this project is to determine how to best implement photo-voltaic penetration. This
implementation will be based upon how this penetration will be installed (residential vs.
community owned farm) and how it will be controlled (regulation vs. power injection). Our goal is
to provide a design solution such that the photo-voltaic penetration will provide the maximum
benefits with respect to system losses and voltage deviation.

SDMAY20-57 13

4. Project Timeline, Estimated Resources, and Challenges

4.1 PROJECT TIMELINE

Figure 4-1 – Fall 2019 Gantt Chart

SDMAY20-57 14

Figure 4-2 – Spring 2020 Gantt Chart

SDMAY20-57 15

The above Gantt charts show our progress on this project over the two semesters we dedicated to
it. The first semester was mostly focused on gaining knowledge on power systems operation and
technology (OpenDSS and MATLAB). The second semester was then assigned to applying what we
had learned. We completed two subprojects – mapping a larger system than before and optimizing
our original system.

4.2 PERSONNEL EFFORT REQUIREMENTS

This table details approximate workloads for different parts of our projects. Most of our time was
focused on simulation of our multiple networks.

Table 4-1 - Task Requirements

Task Description Time
(hours)

Textbook Read applicable chapters to understand examples

Review example given in chapter 10

Report deliverable to advisor

20

Handwritten 4-
node example

Understand problem geometry

Understand solution given in textbook

Complete first iteration calculations individually

Compare solutions with group

Report deliverable to advisor

30

MATLAB 4-node
example

Input given data and equations in textbook

Evaluate and correct solution without regulator

Include regulator once correct solution is obtained

Evaluate and correct solution with regulator

Report deliverable to advisor

10

OpenDSS 4-node
example

Learn OpenDSS syntax and commands

Input given data from example into OpenDSS

Evaluate and correct solution without regulator

Include regulator once correct solution is obtained

Evaluate and correct solution with regulator

Report deliverable to advisor

30

34-node example Use MATLAB to input given data into OpenDSS

Simulate the network

Evaluate and correct solution

Observe system response of 24-hour load period

100

SDMAY20-57 16

Add PV into the network (residential and community)

Optimize PV for best solution and control

Report deliverable to advisor

123 - Node Adjust 34-Node data input MATLAB scripts

Simulate the network

Evaluate solution and troubleshoot

Observe system response to 24-hour loadshape

Report deliverable to advisor

120

34-Node
Optimization

Use MATLAB to determine optimal PV sizing at each node

Implement PV at each node to determine the lowest power
loss of the system

Determine the node with the most out of spec voltage profile

Adjust the level of PV penetration at the determined nodes to
find the optimal solution based on minimizing power loss

70

4.3 OTHER RESOURCE REQUIREMENTS

 OpenDSS open-source software
 Processing power for power-flow solutions and report readouts

4.4 FINANCIAL REQUIREMENTS

Our project is completely simulation based and the software we are using is an open-source
program that is free to download. There will be no other needed resources for our project and as
such our senior design project will have zero financial requirements.

5. Testing and Implementation

5.1 INTERFACE SPECIFICATIONS

Any modern PC is capable of running OpenDSS and MATLAB and as such interfacing is not a
concern. Barring processing requirements, we are hardware agnostic.

5.2 HARDWARE AND SOFTWARE

For data input and to establish a COM server, we are using MATLAB. MATLAB is well designed to
read csv files (how data is provided by IEEE), and scripts can easily be changed depending on exact
data formats (34-node vs 123-node). We also use a controller script to create a COM server which
controls OpenDSS files.

We are using OpenDSS in the testing phase to analyze values within the network. OpenDSS is a
great tool for analyzing power flow solutions as it gives simple user-friendly text file outputs with
detailed data of each node.

SDMAY20-57 17

Lastly, we are using MATLAB for our optimization calculations. Originally, we considered using
CPLEX, but the IEEE papers we read used MATLAB power-flow to optimize rather than objective
function minimization. Based on time constraints, we chose to implement optimization in
MATLAB rather than trying to learn multi-objective function optimization through CPLEX.

5.3 FUNCTIONAL TESTING

Testing for distributed solar PV is performed on the 123-node test feeder, while community (spot)
solar sizing and setting is done on the 34-node system, due to lower complexity. For the 123 Node
system, the goal is to eliminate the need of traditional tap operated voltage regulators by use of
KVAR injection from distributed generation (DG). PV percent penetration is raised from 1% to
100%, and the voltage profile of the system is sampled for each iteration. Initially, the PV inverters
are operated in pure KVAR injection mode, to determine the minimum % penetration that makes
the use of regulating transformers unnecessary. Then, KVAR injection is lowered to determine the
maximum real power injection possible based on the level of PV penetration.

 5.4 NON-FUNCTIONAL TESTING

While we had originally planned for an economic analysis of our systems, this has been omitted
due to time constraints. Ultimately our optimization designed to reduce power losses is
functionally equivalent to economic optimization. While tap changes on transformers do have a
material cost (due to wear), this cost is orders of magnitude smaller than the cost of the loss of
MWh.

5.5 PROCESS

The 4-node was tested against the values in [1] as a basis for our understanding of power-flow.

The 34-node was tested using a base-case model and PV implementation to compare various data
points with each other to see how PV affected them.

The 123-node used a similar function as the 34-node for testing with more analysis on PV inverter
control modes.

The 34-node optimization compared the base-case model losses to the optimized results via the use
of size and setting of community solar-farms outlined in [2] and [3].

5.6 RESULTS

4-Node: Successfully simulated the example given in the textbook by hand, in MATLAB, and in
OpenDSS. We had difficulties in implementing transformer modeling with three-phases.
Ultimately, we were able to figure this issue out by consulting with our advisors and researching
within the OpenDSS forums. This example gave us the tools to understand the power-flow
solutions and implement them in OpenDSS, which will be our primary program used for solving
and optimizing Alliant Energy’s network.

34-Node: We implemented the 34-node network as described by the IEEE test feeder case and
ensured results matched with the solutions provided. Initially some issues were found relating to
the implementation of autotransformers. We then implemented the load shape model and have
begun developing algorithms to quickly analyze results. This testing in particular allowed us to
work with PV injection, which will be paramount moving forward.

SDMAY20-57 18

Figure 5-1 – 34-node bus 832 voltage profile with different % PV

Figure 5-1 shows the most limiting node in terms of voltage for the 34-node system and how
different types of PV implementation affected it. A unity power factor seemed to have the least
impact for improving voltage on node 832. Constant .85 lagging power factor improved the voltage
profile during the day and did not change the profile at all during the night. The constant KVAR
mode improved the voltage profile the most, even raising the voltage levels during the night and
early morning.

These results gave us an understanding of how PV can affect voltage profiles by using different
inverter modes without the aid of voltage regulation components.

123-Node: As discussed above, we began by rewriting the data input MATLAB scripts as necessary.
Once data input was confirmed to be working, we updated our controller script and troubleshot
any remaining issues. The 123 Node system was then run from 1-100% solar PV penetration and 1-
100% of inverter rating reserved for KVAR injection to determine what combinations of inverter
operation and solar penetration would lead to sufficient voltage regulation for a given % PV
penetration, as seen in figure 5-2.

SDMAY20-57 19

Figure 5-2 – 123-node % PV injection used as complete voltage regulation

The curve in figure 5-2 represents the minimum % KVAR injection needed for a given % PV
penetration in order to regulate voltage. Any operation above and to the right of the curve allows
for voltage control without the use of voltage regulators. Agreed upon limits on inverter capacity
reserved for KVAR injection by the Utility places bounds the area in which a specific utility is able
to operate. For instance, if 44% of inverter capacity is reserved by the utility, complete voltage
control is not achieved until PV penetration reaches 81% for this system. As a result, the
recommendation for a hypothetical utility operating the 123-node system is to operate the solar
inverters with a unity power factor until 81% of real loading is supplied by distributed PV, at which
point inverters should be operated in constant KVAR injection mode of at least 44% of inverter
capacity. An important note is that for unity pf, constant pf, and 44% KVAR injections modes of
operation, losses always decrease as % PV penetration increases, so a Utility without the ability to
easily modify inverter behavior would be able to set inverter to provide 44% KVAR injection at all
levels of PV penetration, alongside traditional voltage regulators until PV penetration reaches 81%,
as seen in figures 5-3 and 5-4.

SDMAY20-57 20

Figure 5-3 – 123-node MWh losses

Figure 5-4 – 123-node MVARh losses

SDMAY20-57 21

34-Node Optimization: After we implemented the power-flow into MATLAB and determined our
primary and secondary nodes for community PV installation, we compared total system losses over
a 24-hour period for each iteration.

Figure 5-5 – 34-node optimization results

Figure 5.5 shows total system losses with different PV implementations on our primary and
secondary nodes in each implementation. We started with the base case with no PV which
produced a loss of 6.371 MW. We then added a 316 KW solar farm (size determined by MATLAB
power-flow) at node 832 and reran the power-flow. This gave a system loss of 5.80 MW. As we
changed the PV implementation (reducing at 832 and increasing at 814), we started to see total
system losses rise. Based on these results, we determined the best solution for maximum system
loss reduction was to only have one solar farm implemented at node 832, reducing the system loss
by 9.01%.

6. Closing Material

6.1 CONCLUSION

We started by understanding the power-flow solution given in the textbook example [1] and
implemented this solution in both MATLAB and OpenDSS. We then moved on to the 34-node
network simulation using MATLAB and OpenDSS for modeling and analysis. Next, load shape was
implemented to determine how the system responds over a 24-hour period in order to see what
changes needed to be made to the network. With all of this, we began simulation of PV injection
via community solar and individual household solar to determine which option was more viable.

In the second semester of our project, our work diverged into two subprojects. One was focused on
simulating and analyzing another IEEE test feeder case, the 123-Node system. We were able to
successfully adjust the system to run as desired and found that voltage control via only PV inverter
control was possible. Based on this finding, the minimum %PV to ensure voltage control was
determined for all levels of %KVAR injection. A specific level of KVAR injection (44% of inverter

SDMAY20-57 22

capacity reserved) for a hypothetical utility company was examined to determine the system losses
as %PV penetration increased. Based on these 2 conclusions, the recommendation was made to
operate in 44% KVAR injection for all PV penetration levels less than 81%, for the purpose of loss
minimization, and operation along the developed curve above 81%, to ensure maximum power
production from the PV while maintaining voltage within 0.95-1.05 p.u. quantities. The other
subproject was 34-Node optimization, with the goal of reducing power losses. This subproject had
the result of determining that the optimal type was community PV and the optimal place to inject
PV was at node 832 with 316kw of PV being injected at that site. Furthermore, we also concluded
that the type of control used, constant power factor, was not sufficient for this system since the
voltage at node 814, the secondary injection site, did not improve as the PV injection was split
between nodes 832 and 814 and power losses actually increased as less was added to node 832.

In our efforts in this project, we have completed power analysis of several distribution systems and
reviewed the impact of solar energy penetration. While we were not able to analyze real life
systems as was originally planned, our work will serve as a springboard for future groups working in
this area. To this end, we have annotated our code and provided instruction to future users.

6.2 REFERENCES

[1] W. H. Kersting, Distribution System Modeling and Analysis, 3rd ed. Boca Raton, FL: CRC Press,
2012 pp. 141-390

[2] K. Seepromting, R. Chatthaworn, P. Khunkitti, A. Kruesubthaworn, A. Siritaratiwat and C.
Surawanitkun, "Optimal Grid-Connected with Multi-Solar PV Placement and Sizing for Power
Loss Reduction and Voltage Profile Improvement," 2018 18th International Symposium on
Communications and Information Technologies (ISCIT), Bangkok, 2018, pp. 479-483.

[3] D. Q. Hung, N. Mithulananthan and K. Y. Lee, "Determining PV Penetration for Distribution
Systems With Time-Varying Load Models," in IEEE Transactions on Power Systems, vol. 29, no.
6, pp. 3048-3057, Nov. 2014.

SDMAY20-57 23

Appendix I: Operation Manual

MATLAB CONTROL OF OPENDSS

MATLAB control of the OpenDSS solver is accomplished through the use of a COM interface.
While the standalone .exe version of OpenDSS can be run without installation, use of the COM
server requires OpenDSS to be registered in Windows, which does require installation. If the
system the program is being run on does not have administrator privileges, contact your system
administrator about installation of OpenDSS.

The OpenDSS script that is compiled to run the daily solution set is not changed during a solution
set. Changes to the OpenDSS model are accomplished by changing the contents of .txt files that are
“redirected” by OpenDSS when the script is compiled. This ensures that while system model is
changed for each iteration, the solution settings remain constant. If a specific OpenDSS command
is needed however, the DSSStart.m script does provide the means by which a command can be
inserted into the DSS.

A common assumption in the MATLAB script is that all buses are referred to by a 3 character
string, with loads, lines, and PVsystem objects receiving names corresponding to the buses to
which they are attached, e.g. a line object connecting bus 800 and 802 would be referenced as
line.800802, a single phase load attached to phase c of bus 802 would be referenced as load.800cs,
etc. Due to buses being handled internally by the MATLAB script as strings rather than numbers,
the scripts should be extensible to larger systems by use of alphabetical characters to refer to more
than 999 buses. This functionality is not guaranteed, and some troubleshooting may be required if
scripts have not been fully updated to refer to bus names as strings internally. Due to the
numbering of the buses in the 34-Node and 123-Node systems, busName and busNumber are
generally interchangeable.

File paths used in the MATLAB and OpenDSS scripts assume a particular file system naming and
organizational structure. Particularly, the OpenDSS model assumes that all loads fall into 2
categories, distributed or spot, and that all distributed loads and all spot loads are contained within
the same .txt file that is redirected by the OpenDSS master script. Some OpenDSS models separate
the scripts defining line, loads, and other circuit components into rural, suburban, and urban
models. For use with our scripting assumptions, these would need to be consolidated into a single
model, or the scripts used to update the model between iterations would need to be significantly
overhauled.

Text files used by OpenDSS must be saved with ANSI encoding. This is not the default output from
the MATLAB printf() function used in file generation. Conversion of an existing .txt file to ANSI
encoding can be done by opening the file in Notepad++, changing the encoding, and resaving the
file. To produce ANSI encoded .txt files directly from a MATLAB script,
slCharacterEncoding('Windows-1252'); should be added prior to any printf() statements.

Code used for optimization of the 34-node system should not be considered extensible.

SDMAY20-57 24

Appendix II: Initial goals
Our goals for this project were to familiarize ourselves with power-flow algorithms so that we could
model and study medium to large distribution networks. Specifically, we were building our
knowledge so we could model a network from Alliant Energy and implement PV in order to
recommend the best installation and implementation method. However, our group was unable to
maintain any steady line of communication with Alliant Energy and due to the COVID-19
pandemic, our goals were altered to model two different IEEE distribution systems: 34-node and
123-node.

We also wanted to have active control over PV inverter modes throughout our simulations.
However, due to the constraints of running the simulations, fixed inverter settings were used for
our simulations. Dynamic inverter settings would allow for a more optimal voltage control scheme,
where KVAR injection would be minimized during periods of high solar power production, and
greater KVAR injection as power began to decrease, specifically in the early evening when the
combination of maximum power demand and decreasing solar production leads to large voltage
droops.

Appendix III: Code

MATLAB CODE

createMeters.m
function createMeters(lineDataFilename, numNodes)
%Creates a meter object at every bus in a system for use in finding
both
%the total losses in the system, as well as the losses at each node.
This
%file is extensible to all systems with less than 999 nodes, and
assumes
%that the OpenDSS line objects consist of 6 digit names, wehre the
first 3
%digits specify the sending bus, and the last 4 are the receiving bus.
For
%systems with node names that cannot be expressed in 3 digits,
significant
%rework to all script will be needed.
 slCharacterEncoding('Windows-1252');

 meterstrFormat = 'New Energymeter.%s line.%s 1 losses=YES\n';
 filepath = sprintf('%dNode/OpenDSStxtfiles/%s',numNodes,
lineDataFilename);

 lineCells = readcell(filepath);

 if numNodes ==34
 lineCodes = lineCells(:,2);

SDMAY20-57 25

 for i = 1:length(lineCodes)
 str = lineCodes(i);
 lineNames(i,1) = string(str);
 lineStr = char(str);
 lineNum = lineStr(6:11);
 lineNums(i) = string(lineNum);
 end
 end
 if numNodes == 123
 lineCodes = lineCells(:,1);
 for i = 1:length(lineCodes)
 str = lineCodes(i);
 lineNames(i,1) = string(str);
 lineStr = char(str);
 lineNum = lineStr(10:15);
 lineNums(i) = string(lineNum);
 end
 end
 %% fopen
 outFilename = sprintf('C:\\may2020-
57/%dNode/openDSStxtfiles/busLossMeters.txt', numNodes);
 docoutput = fopen(outFilename, 'w');

 %% Iterate over all lines to create monitors
 for i = 1:length(lineCodes)
 fprintf(docoutput, meterstrFormat, lineNums(i), lineNums(i));
 end
 fclose all;

end

createMonitors.m
function createMonitors(lineDataFilename)
 slCharacterEncoding('Windows-1252');

 monitorstrFormat = 'New Monitor.%sMonitor mode=0 element=%s 2\n';
 filepath = sprintf('123Node/OpenDSStxtfiles/%s',lineDataFilename);

 lineCells = readcell(filepath);
 lineCodes = lineCells(:,2);

 docoutput1 = fopen('C:\may2020-
57/123Node/openDSStxtfiles/busVoltageMonitors.txt', 'w');
 docoutput2 = fopen('C:\may2020-
57/123Node/Results/monitorExports.txt', 'w');

 numMonitors = 0;
 for i = 1:length(lineCodes)
 str = lineCodes(i);

SDMAY20-57 26

 lineNames(i,1) = string(str);
 busStr = char(str);
 if busStr(1) ~= 'r'
 numMonitors = numMonitors + 1;
 busNum = busStr(9:11);
 busNums(numMonitors) = string(busNum);
 fprintf(docoutput1, monitorstrFormat, busNums(numMonitors),
lineNames(i));
 fprintf(docoutput2, 'export monitor %sMonitor\n',
busNums(numMonitors));
 end
 end
 fclose all;
end

getBusNumbers.m
function busNumbers = getBusNumbers(lineDataFilename,numNodes)
 monitorstrFormat = 'New Monitor.%sMonitor mode=0 element=%s 2\n';
 filepath =
sprintf('%dNode/OpenDSStxtfiles/%s',numNodes,lineDataFilename);

 lineCells = readcell(filepath);
 if numNodes == 34
 lineCodes = lineCells(:,2);
 for i = 1:length(lineCodes)
 str = lineCodes(i);
 lineNames(i,1) = string(str);
 busStr = char(str);
 busNum = busStr(9:11);
 busNumbers(i) = string(busNum);
 end
 end
 if numNodes == 123
 lineCodes = lineCells(:,1);
 for i = 1:length(lineCodes)
 str = lineCodes(i);
 lineNames(i,1) = string(str);
 busStr = char(str);
 busNum = busStr(13:15);
 busNumbers(i) = string(busNum);
 end
 end
end

getMonitorData.m
function busVoltages = getMonitorData(busNum, openDSSCircuitName,
numNodes)

SDMAY20-57 27

 filename =
sprintf('%dNode/Results/%s_Mon_%smonitor_1.csv',numNodes,
openDSSCircuitName, busNum);
 fopen(filename);
 monitorData = readtable(filename);
 hours = monitorData{:,1};
 sec = monitorData{:,2};
 v1 = monitorData{:,3};
 busVoltages.v2 = 0.*v1;
 busVoltages.v3 = 0.*v1;
 if monitorData.Properties.VariableNames{5} == 'V2'
 v2 = monitorData{:,5};
 busVoltages.v2 = v2;
 if monitorData.Properties.VariableNames{7} == 'V3'
 v3 = monitorData{:,7};
 busVoltages.v3 = v3;
 end
 end
 if monitorData.Properties.VariableNames{5} == 'V3'
 v3 = monitorData{:,5};
 busVoltages.v3 = v3;
 end

 busVoltages.v1 = v1;

 len = length(hours);
 for i=1:len
 busVoltages.time(i,1) = hours(i) + sec(i)/3600;
 end
end

distloadGen.m
%% Script description
%Converts a csv file from an IEEE test feeder describing distributed
loads
%into a text file readable by OpenDSS. The load is evenly split between
the
%2 buses along which the load is distributed. Note that this is not a
fully
%accurate assumption. If used in future, this script should be updated
to
%place 2/3 of the loading at 1/4 of the distance between the buses, and
the
%remaining one third at the destination bus in order to get fully
accurate
%losses. The assumption used in this script does produce the correct
%voltage drop.

SDMAY20-57 28

clc
clear all
slCharacterEncoding('Windows-1252'); %needed for .txt tilfes to be read
by OpenDSS

%Filepath of the source and destination files
loaddata = readcell('C:\may2020-57/feeder123/feeder123/spot load
data.csv');
DocOutput = fopen('C:\may2020-
57/123Node/OpenDSStxtfiles/spotloadData.txt','w');

%The csv file has header type information in the first 4 lines that can
be
%freely discarded.
for n=5:size(loaddata,1)-1
 %Determines the load type and assigns the appropriate code for
openDSS
 if loaddata{n,4} == 'PQ'
 modeltype=1;
 elseif loaddata{n,4} == 'I'
 modeltype=5;
 elseif loaddata{n,4} == 'Z'
 modeltype=2;
 end
 %Parses the input to find the buses the loads are attached to and
the
 %kW and kVA rating of each
 bus1 = loaddata{n,1};
 bus2 = loaddata{n,2};
 kWA = loaddata{n,5}/2;
 kVARA = loaddata{n,6}/2;
 kWB = loaddata{n,7}/2;
 kVARB = loaddata{n,8}/2;
 kWC = loaddata{n,9}/2;
 kVARC = loaddata{n,10}/2;

 %Vminpu=0.85 ensures proper power flow solution if the regulators
in
 %the systems are turned off to get an idea of unregulated
performance.
 if loaddata(n, 3) == "Y"
 conntype = "Wye";
 kV = 24.9/sqrt(3);
 formatSpecA1 = 'New load.%d%da Phases=%d Bus1=%d.1 conn=%s
model=%d kv=%f kw=%f kVar=%f vminpu=0.85 \n';
 formatSpecB1 = 'New load.%d%db Phases=%d Bus1=%d.2 conn=%s
model=%d kv=%f kw=%f kVar=%f vminpu=0.85 \n';

SDMAY20-57 29

 formatSpecC1 = 'New load.%d%dc Phases=%d Bus1=%d.3 conn=%s model=%d
kv=%f kw=%f kVar=%f vminpu=0.85 \n';
 else
 conntype = "Delta";
 kV = 24.9;
 if (kWA&&kWB || kWA&&kWC || kWB&&kWC)
 formatSpecA1 = 'New load.%d%da Phases=%d Bus1=%d.1.2
conn=%s model=%d kv=%f kw=%f kVar=%f vminpu=0.85 \n';
 formatSpecB1 = 'New load.%d%db Phases=%d Bus1=%d.2.3
conn=%s model=%d kv=%f kw=%f kVar=%f vminpu=0.85 \n';
 formatSpecC1 = 'New load.%d%dc Phases=%d Bus1=%d.3.1
conn=%s model=%d kv=%f kw=%f kVar=%f vminpu=0.85 \n';
 else
 formatSpecA1 = 'New load.%d%da Phases=%d Bus1=%d.1 conn=%s
model=%d kv=%f kw=%f kVar=%f vminpu=0.85 \n';
 formatSpecB1 = 'New load.%d%db Phases=%d Bus1=%d.2 conn=%s
model=%d kv=%f kw=%f kVar=%f vminpu=0.85 \n';
 formatSpecC1 = 'New load.%d%dc Phases=%d Bus1=%d.3 conn=%s
model=%d kv=%f kw=%f kVar=%f vminpu=0.85 \n';
 end
 end

 %Producing load objects withg zero loading created floating point
math
 %errors in the OpenDSS solution, so these loads are discarded.
 if (kWA ~= 0)

fprintf(DocOutput,formatSpecA1,bus1,bus2,1,bus1,conntype,modeltype,kV,k
WA,kVARA);

fprintf(DocOutput,formatSpecA1,bus2,bus1,1,bus2,conntype,modeltype,kV,k
WA,kVARA);
 end
 if (kWB ~= 0)

fprintf(DocOutput,formatSpecB1,bus1,bus2,1,bus1,conntype,modeltype,kV,k
WB,kVARB);

fprintf(DocOutput,formatSpecB1,bus2,bus1,1,bus2,conntype,modeltype,kV,k
WB,kVARB);
 end
 if (kWC ~= 0)

fprintf(DocOutput,formatSpecC1,bus1,bus2,1,bus1,conntype,modeltype,kV,k
WC,kVARC);

fprintf(DocOutput,formatSpecC1,bus2,bus1,1,bus2,conntype,modeltype,kV,k
WC,kVARC);
 end
 fprintf(DocOutput, "\n");

SDMAY20-57 30

end

distloadMod.m
%% Produces a .txt file in appropriate format to apply modifiers to
distributed load files
%This script reads a .dss or .txt file that is ofrmatted for OpenDSS
and
%adds a set of modifiers to allow control of loadshape, etc.
automatically

%% Code
clear all
clc

filename = 'C:\may2020-57/123node/OpenDSStxtFiles/spotloadData';
inputFilename = strcat(filename, '.txt');
input = fopen(inputFilename, 'r');

inputData = readtable(inputFilename);

loadshapestr = '';
xlsData = readcell('C:\may2020-57/ExcelFiles/loadshapeData.xlsx');%%
Read the load shape xlsx file

for n = 2:49 %convert the load shape data into a vector and format the
string used by opendss
 loadshape(n-1) = xlsData{n,9};
 strformat = ' %f';
 loadshapestr = strcat(loadshapestr, sprintf(strformat, loadshape(n-
1)));% Produces a string that is a row vector of all the vlaues for the
loadshape
end

outputFilename = strcat(filename, 'Modifiers.txt');
output = fopen(outputFilename, 'w');% Sets the modifier output to be
the inputfilename + modifiers
[length, trash] = size(inputData);%Find the length of the input data
loadNamesPrelimCell = inputData.Var1;%Get the names of the loads that
are being modified

for i=1:length
 str = loadNamesPrelimCell{i};
 loadNames(i,1) = string(str(5:14));
end

SDMAY20-57 31

modifierformat = 'loadshape=[%s]'; %All loads will have the same
loadshape modifier
modifier = sprintf(modifierformat, loadshapestr);%Make the string
%% Changed to nothing when xls data not needed
modifier="";
%%
formatString = '%s.%sdaily=loadsh\n';%Format the output
for i=1:length
 fprintf(output,formatString, loadNames(i), modifier); %Output
should be load.busname.modifier=[row vector]
end

distPVgen.m
function distPVgen(percPen, distLoadFileName, Model, Variable,
numNodes)
%DISTPVGEN creates distributed PVSystem objects for each distibuted
load
%
%percPen is the percentage of peak real load at each node the PV can
%supply e.g. percPen = 100 is all real loading covered by the solar
system
%
%distLoadFileName is a string containing the file name of the
distributed
%loads to be covered e.g. 'exampleDistLoadFilename'
%
%Model: 1=unity PF, 2=constPF, 3=constQ, 4=variablePF
%
%Variable is the applicable variable for the inverter control mode
% Unity Power Factor : any integer value
% Constant Power Factor : [0,1]
% Constant Q : Q as a factor of max inverter rating [0,1]
% For instance 0.25 is 25% of kVA for Q
injection
% Variable Q : Power factor determined by pervious solution
%
%Usage:
% distPVgen(20,'distloadData34Node.dss',1,0) adds 20% PV penetration
to
% the 34 node IEEE test feeder at unity power factor
% distPVgen(20,'distloadData34Node.dss',3,0.75) uses 75% of inverter
% rating for Q injection at each distibuted PVSystem
%{
percPen = 20;
distLoadFileName = 'distloadData34Node.txt';
Model = 1;
Variable = 1;
%}

SDMAY20-57 32

 slCharacterEncoding('Windows-1252');
 pcPen = percPen/100;
 inputFile = fopen(distLoadFileName, 'r');
 inputData = readtable(distLoadFileName,'delimiter', '=');
 fclose('all');
 output = fopen(sprintf('C:\may2020-
57/%dnode/OpenDSStxtFiles/distPV34Node.txt', numNodes), 'w');% Sets the
output to be the PVsystem File
 [length, trash] = size(inputData);%Find the length of the input
data
 loadNamesPrelimCell = inputData.Var1;%Get the names of the buses
that PV is being attached to
 %Extract Name of each object
 for i=1:length
 str = loadNamesPrelimCell{i};
 loadNames(i,1) = string(str(5:16));
 individualLoad = char(loadNames(i));
 PVname = string(individualLoad(6:12));
 PVSystemNames(i,1) = PVname;
 end

 %Extract connection type of PV
 loadConnPrelimCell = inputData.Var4;
 for i=1:length
 str = loadConnPrelimCell{i};
 loadConn(i,1) = string(str(1:9));
 individualConn = char(loadConn(i));
 PVConn = string(individualConn(1:3));
 PVSystemConns(i,1) = PVConn;
 end
 %Extract bus PV is connected to
 loadBusPrelimCell = inputData.Var3;
 for i=1:length
 str = loadBusPrelimCell{i};
 loadBuss(i,1) = string(str(1:10));
 individualBus = char(loadBuss(i));
 if individualBus(7) == 'c'
 strend = 5;
 else
 strend = 7;
 end
 PVbus = string(individualBus(1:strend));
 PVSystemBuses(i,1) = PVbus;
 end
 %Extract kV Rating of the PV
 %Note, variable names used to extract information from the text
file
 %are re-used
 loadBusPrelimCell = inputData.Var6;
 for i=1:length

SDMAY20-57 33

 str = loadBusPrelimCell{i};
 loadBus(i,1) = string(str(1:10));
 individualBus = char(loadBus(i));
 PVbus = string(individualBus(1:9));
 PVSystemkVstr(i,1) = PVbus;
 PVSystemkV(i,1) = str2double(PVSystemkVstr(i));
 end
 %Extract kW Rating of the PV
 %Note, variable names used to extract information from the text
file
 %are re-used
 loadBusPrelimCell = inputData.Var7;
 for i=1:length
 str = loadBusPrelimCell{i};
 loadBus(i,1) = string(str(1:10));
 individualBus = char(loadBus(i));
 PVbus = string(individualBus(1:9));
 PVSystemkWstr(i,1) = PVbus;
 PVSystemkW(i,1) = str2double(PVSystemkWstr(i));

 end
 for n=1:length
 %Parses the input to find the buses the loads are attached to
and the
 %kW and kVA rating of each
 bus1 = PVSystemBuses(n);
 kW = pcPen * PVSystemkW(n);
 kVA = kW;
 %Does preformatting based on Wye vs Delta Connection
 if PVSystemConns(n) == "Wye"
 conntype = "Wye";
 formatSpec = 'New PVSystem.%s Phases=1 Bus1=%s conn=%s
kv=%s kVA=%d Pmpp=%d\n~ effcurve=Myeff P-Tcurve=MyPvsT Daily=MyIrrad
TDaily=MyTemp';
 else
 conntype = "Delta";
 formatSpec = 'New PVSystem.%s Phases=1 Bus1=%s conn=%s
kv=%s kVA=%d Pmpp=%d\n~ effcurve=Myeff P-Tcurve=MyPvsT Daily=MyIrrad
TDaily=MyTemp';
 end

 switch Model
 case 1
 pf = 1;
 str = sprintf(' pf=%f \n',pf);
 formatSpec1 = strcat(formatSpec, str);
 case 2
 pf = Variable;
 str = sprintf(' pf=%f \n',pf);
 formatSpec1 = strcat(formatSpec, str);

SDMAY20-57 34

 case 3
 kVAR = Variable * kVA;
 str = sprintf(' kvar=%f \n', kVAR);
 formatSpec1 = strcat(formatSpec, str);
 case 4
 pf = Variable;
 str = sprintf(' pf=%f \n',pf);
 formatSpec1 = strcat(formatSpec, str);
 end

 fprintf(output, formatSpec1,PVSystemNames(n), PVSystemBuses(n),
conntype, PVSystemkVstr(n), kVA, kW);
 fprintf(output, '\n');
 end
 fclose(output);
end

DSSStartup.m
function [Start,Obj,Text] = DSSStartup(mydir)
 % Function for starting up the DSS
 % make sure the proper directory is the active filepath
 cd(mydir);
 %
 %instantiate the DSS Object
 Obj = actxserver('OpenDSSengine.DSS');
 %
 %Start the DSS. Without this statement, DSS will not run (gives
 %max_circuit=0 error). Only needs to be executed the first time
 %w/in a
 %Matlab session
 % Define the text interface
 Start = Obj.Start(0);
 Text = Obj.Text;
End

inputdata.m
clc
clear all
close all

%%
slCharacterEncoding('Windows-1252'); %needed for .txt tilfes to be read
by OpenDSS

%Output filepath
DocOutput = fopen('C:\may2020-
57/123Node/OpenDSStxtfiles/LineConfigs.txt','w');

SDMAY20-57 35

%Reads the line data from a csv file produced from the IEE test feeder
%.xls files
linedata = readmatrix('C:\may2020-57/feeder123/feeder123/line
data.csv');
%Specifies the number of phases associated with each line
configuration.
%This will need to be changed for each new system depending on the
%configuations present in that system.
threephase = [1,2,3,4,5,6,12];
twophase = [7,8];
onephase = [9,10,11];

%Iterates over the line data and produces OpenDSS objects corresponding
to
%them. Some of the line definitions will need to be changed in order to
%support the definitions of the regulators as 3 single phase
%autotransformers.
for n=1:size(linedata,1)
 formatSpec3 = 'New Line.%s%s Phases=%d Bus1=%s Bus2=%s
linecode=config%d Length=%d units=ft \n';
 formatSpec2 = 'New Line.%s%s Phases=%d Bus1=%s.%d.%d.0
Bus2=%s.%d.%d.0 linecode=config%d Length=%d units=ft \n';
 formatSpec1 = 'New Line.%s%s Phases=%d Bus1=%s.%d.0 Bus2=%s.%d.0
linecode=config%d Length=%d units=ft \n';
 config = linedata(n,4);
 %Determines the number of phases of the line based on the
configuration
 %type.
 if ismember(config, threephase)
 phases = 3;
 elseif ismember(config, twophase)
 phases = 2;
 else
 phases = 1;
 end
 %Turns the bus number into a string with zeros appended to the
front for buses that would not otherwise contain 3 digits. for systems
with more than 999 buses, all script will need significant overhaul,
since all functions relating to line configurations assume that line
objects have a 6 character numerical name, with the first 3 digits
representing the first bus, and the 4th through 6th digits representing
the second bus.
 bus1 = linedata(n,1);
 if bus1 <10
 bus1str = strcat("00", num2str(bus1));
 elseif bus1<100
 bus1str = strcat("0", num2str(bus1));
 else
 bus1str = num2str(bus1);

SDMAY20-57 36

 end
 bus2 = linedata(n,2);
 if bus2 <10
 bus2str = strcat("00", num2str(bus2));
 elseif bus2<100
 bus2str = strcat("0", num2str(bus2));
 else
 bus2str = num2str(bus2);
 end
 len = linedata(n,3);
 %Prints the data, based on which phases are active
 if phases== 3

fprintf(DocOutput,formatSpec3,bus1str,bus2str,phases,bus1str,bus2str,co
nfig,len);
 end
 if phases == 2
 if config == 7
 subBus1 = 1;
 subBus2 = 3;
 else
 subBus1=1;
 subBus2=2;
 end
 fprintf(DocOutput,formatSpec2,bus1str, bus2str, phases,
bus1str, subBus1, subBus2, bus2str, subBus1,subBus2,config, len);
 end

 if phases == 1
 if config == 9
 subBus = 1;
 elseif config == 10
 subBus = 2;
 elseif config == 11
 subBus = 3;
 end

fprintf(DocOutput,formatSpec1,bus1str,bus2str,phases,bus1str,subBus,bus
2str,subBus,config,len);
 end

end
fclose(DocOutput);

loadcsvConverter.m
clc
clear all

%% Script Information

SDMAY20-57 37

%Sanitizes the load .xlsx files for use in the distloadgen.m and
%spotloadgen.m files. The primarily consists of separating the
connection
%and mode into 2 separate columns, and spacing the rest of the data
%accordingly.
data = readcell('C:/may2020-57/feeder123/feeder123/spot loads
data.xls');
[sz,trash] = size(data);
csvdata = cell(sz,9);

csvdata{1,1} = data{1,1};
csvdata{3,1} = data{3,1};

for n=3:4
 for k=8:-1:3
 csvdata{n,k+1} = data{n,k};
 end

end

for n=5:sz-1
 for k=8:-1:3
 csvdata{n,k+1} = data{n,k};
 end
 datastr = data{n,2};
 csvdata{n,3} = datastr(3);
 if csvdata{n,3} == "P"
 csvdata{n,3} = "PQ";
 end
 csvdata{n,2} = data{n,2}(1);
 csvdata{n,1} = data{n,1};
end

writecell(csvdata, 'C:/may2020-57/feeder123/feeder123/spot load
data.csv');

lossCalc.m
function output = lossCalc(numNodes)
%Uses the output of the energymeter objects in OpenDSS to find the
total MW
%and MVAR losses in the system. THe number of nodes is needed to
specify
%the filepath. After the data is read, the lossmonitor.csv file is
deleted,
%preparing the system for another solution.
 filename = sprintf('C:/may2020-57/%dNode/Results/lossmonitor.csv',
numNodes);
 doc = fopen(filename);
 lossData = readtable(filename);

SDMAY20-57 38

 output.MW = sum(lossData.ZoneLossesKWh)/1e3;
 output.MVAR = sum(lossData.ZoneLossesKvarh)/1e3;
 fclose(doc);
 delete(sprintf('C:/may2020-57/%dNode/Results/lossmonitor.csv',
numNodes))

end

OpenDSScontroller.m
clc
clear all
close all
opengl software
delete C:/may2020-57/34Node/Results/lossmonitor.csv
warning off MATLAB:table:ModifiedAndSavedVarnames
%% Starting OpenDSS server
% Start the openDSS COM server
%NOTE: OpenDSS must be installed to be registered to windows for use as
a
%COM server. Simply copying the .exe file to the drive will not work.
global DSSStartOk;
global DSSObj;
global DSSText;

[DSSStartOk, DSSObj, DSSText] = DSSStartup('C:\may2020-57/34Node');

%% Fetching the active circuit name

DSSCircuit = DSSObj.ActiveCircuit;

%% Getting Bus Numbers for use in monitor data collection
busNames = getBusNumbers('LineConfigs34Node.txt', 34);

%% Increasing PV penetration and changing mode of implementation
%This descrtibes the filepaths for the distributed and spot loads in
the
%system. THis allows integration of solar modeled as a percentage of
the
%customers at each node implementing solar individually.
distloadFilepath = 'C:\may2020-
57/34Node/OpenDSStxtfiles/distloadData34Node';
spotloadFilepath = 'C:\may2020-
57/34Node/OpenDSStxtfiles/spotloadData34Node';

%j represents the mode of operation of the solar inverters
%i is the percent integration
%n is used as an indexing variable for the coallation of data

SDMAY20-57 39

for j = 1:3
 %The strings used in filenames and plot titles are defined based on
the
 %mode of operation of the silar inverters at the beginning of each
 %solution set
 switch j
 case 1
 plotTitle = 'unity pf';
 lossName = 'unity';
 var = 1;
 case 2
 plotTitle = 'const 0.85 pf';
 lossName = 'const_pf';
 var = 0.85;
 case 3
 plotTitle = 'const kvar';
 lossName = 'const_kvar';
 var = 0.5;
 otherwise
 plotTitle = 'var pf';
 end
 %Raising solar penetration from 1% to 100% in 1% increments
 for i=1:100
 %Generation of the
 distPVgen(i,distloadFilepath,j,var,34);
 spotPVgen(i,spotloadFilepath,j,var);
 DSSText.Command = ('compile 34NodeTestFeeder.dss');
 losstable = readtable('C:\may2020-
57/34Node/Results/lossmonitor.csv');
 for n = 1:length(busNames)
 busVoltages(i,n).name = busNames(n);
 busVoltages(i,n).voltage = getMonitorData(busNames(n),
'34NodeFeeder', 34);
 end
 for n = 1:height(losstable)
 nodeKWLosses(i+1,n) =
convertCharsToStrings(num2str(losstable.ZoneMaxKWLosses(n)));
 nodeKVARLosses(i+1,n) =
convertCharsToStrings(num2str(losstable.ZoneMaxKvarLosses(n)));
 end
 losses(i,j) = lossCalc(34);
 %OOS(i) = MonitorOOS(busVoltages(i),24900/sqrt(3));
 sprintf('%5.2f %% Complete',((j-1)+(i/100))*(100/3))
 end
 nodeKWLosses(1,:) = convertCharsToStrings(losstable.Meter)';
 nodeKVARLosses(1,:) = convertCharsToStrings(losstable.Meter)';
 kwWriteFilepath = sprintf('C:\\may2020-
57/34Node/Results/%s_kw_losses.csv', lossName);
 kvarWriteFilepath = sprintf('C:\\may2020-
57/34Node/Results/%s_kvar_losses.csv', lossName);

SDMAY20-57 40

 writematrix(nodeKWLosses, kwWriteFilepath);
 writematrix(nodeKVARLosses, kvarWriteFilepath);

 vnom = 1.4376e4;

 %% Plotting Bus 824 Voltage
 %% Plotting Bus 832 Voltage
 figure(1);
 v1 = busVoltages(1,25).voltage.v1 ./ vnom;
 time = busVoltages(1,25).voltage.time;
 v2 = busVoltages(25,25).voltage.v1 ./ vnom;
 v3 = busVoltages(50,25).voltage.v1 ./ vnom;
 v4 = busVoltages(75,25).voltage.v1 ./ vnom;
 v5 = busVoltages(100,25).voltage.v1 ./ vnom;

 subplot(3,1,j);
 sgtitle('Bus 832 p.u. Voltage Without Regulators');
 plot(time, v1, time, v2,time, v3, time, v4,time, v5);
 xlim([0,24]);
 ylim([0.9,1.1]);
 title(plotTitle);
 legend('1%','25%','50%','75%','100%', 'Location', 'southeast');
 %% Plotting bus 890 Voltage
 figure(2);
 vnom = 2.4e3;
 v1 = busVoltages(1,32).voltage.v1 ./ vnom;
 time = busVoltages(1,32).voltage.time;
 v2 = busVoltages(25,32).voltage.v1 ./ vnom;
 v3 = busVoltages(50,32).voltage.v1 ./ vnom;
 v4 = busVoltages(75,32).voltage.v1 ./ vnom;
 v5 = busVoltages(100,32).voltage.v1 ./ vnom;

 subplot(3,1,j);
 sgtitle('Bus 890 p.u. Voltage Without Regulators');
 plot(time, v1, time, v2,time, v3, time, v4,time, v5);
 xlim([0,24]);
 ylim([0.9,1.1]);
 title(plotTitle);
 legend('1%','25%','50%','75%','100%', 'Location', 'southeast');
 %% Plotting Losses as a function of PV percent Penetration
 figure(3);
 for n = 1:100
 MWLosses(n) = losses(n,j).MW;
 MVARLosses(n) = losses(n,j).MVAR;
 end
 subplot(3,1,j);
 sgtitle('MWh losses as a function of PV percent penetration');
 plot(1:1:100, MWLosses);
 xlim([0,100]);

SDMAY20-57 41

 ylim([0,10]);
 title(plotTitle);

 figure(4);
 subplot(3,1,j);
 sgtitle('MVARh losses as a function of PV percent penetration');
 plot(1:1:100, MVARLosses);
 xlim([0,100]);
 ylim([-5,5]);
 title(plotTitle);
end

OpenDSScontroller123Node.m
clc
clear all
close all
opengl software
delete C:/may2020-57/123Node/Results/lossmonitor.csv %Each solution of
the DSS appends the energy meter data to the end of the specified file.
This ensures the first solution only has one set of data.
warning off MATLAB:table:ModifiedAndSavedVarnames %Disbales warning on
readtable operations
%% Starting OpenDSS server
% Start the DSS
global DSSStartOk;
global DSSObj;
global DSSText;

[DSSStartOk, DSSObj, DSSText] = DSSStartup('C:\may2020-57/123Node');

%% Changing the solution mode

DSSCircuit = DSSObj.ActiveCircuit;
%DSSText.Command = ('compile 34NodeTestFeeder.dss');

%% Getting Bus Numbers for use in monitor data collection
busNames = getBusNumbers('LineConfigs.txt', 123);

%% Increasing PV penetration

%Load filepaths. If distributed loads are included, those filepaths
should
%be specified here as well
spotloadFilepath = 'C:\may2020-
57/123Node/OpenDSStxtfiles/spotloadData';

SDMAY20-57 42

for j = 1:3 %j is used as an indexing variable for the moder of
operation of the solar inverters
 switch j
 case 1
 plotTitle = 'unity pf';
 lossName = 'unity';
 var = 1;
 case 2
 plotTitle = 'const 0.85 pf';
 lossName = 'const_pf';
 var = 0.85;
 case 3
 plotTitle = 'const kvar';
 lossName = 'const_pf';
 var = 0.44;
 otherwise
 plotTitle = 'var pf'; %Note: Can be used for voltage
controlled operation, not used in this solution set
 end
 for i=1:100
 %Generates PV associated with spot loads
 spotPVgen123Node(i,spotloadFilepath,j,var, 0);

 DSSText.Command = ('compile 123NodeFeeder.dss'); %Runs the
power flow solution

 losstable = readtable('C:\may2020-
57/123Node/Results/lossmonitor.csv');%Reads the data from the loss
table

 for n = 1:length(busNames)
 %Finds bus voltages, as well as the minimum and max for
each solution
 busVoltages(i,n).name = busNames(n);
 busVoltages(i,n).voltage = getMonitorData(busNames(n),
'123NodeFeeder', 123);
 max1(i,n) = max(busVoltages(i,n).voltage.v1);
 max2(i,n) = max(busVoltages(i,n).voltage.v2);
 max3(i,n) = max(busVoltages(i,n).voltage.v3);
 min1(i,n) = min(busVoltages(i,n).voltage.v1);
 min2(i,n) = min(busVoltages(i,n).voltage.v2);
 min3(i,n) = min(busVoltages(i,n).voltage.v3);

 end

 for n = 1:height(losstable)
 %Finds the losses at each node in kw and kvar
 nodeKWLosses(i+1,n) =
convertCharsToStrings(num2str(losstable.ZoneMaxKWLosses(n)));

SDMAY20-57 43

 nodeKVARLosses(i+1,n) =
convertCharsToStrings(num2str(losstable.ZoneMaxKvarLosses(n)));
 end

 % Finds the total losses in the system, and deletes
lossmonitor.csv in preparation for the next solution
 losses(i,j) = lossCalc(123);
 sprintf('%5.2f %% Complete',((j-1)+(i/100))*(100/3))
 end
 %Data conversion that prepares the data to be written to csv files
for
 %use in CPLEX for optimization.
 nodeKWLosses(1,:) = convertCharsToStrings(losstable.Meter)';
 nodeKVARLosses(1,:) = convertCharsToStrings(losstable.Meter)';
 kwWriteFilepath = sprintf('C:\\may2020-
57/123Node/Results/%s_kw_losses.csv', lossName);
 kvarWriteFilepath = sprintf('C:\\may2020-
57/123Node/Results/%s_kvar_losses.csv', lossName);
 writematrix(nodeKWLosses, kwWriteFilepath);
 writematrix(nodeKVARLosses, kvarWriteFilepath);

 %Nominal voltage for use in plotting. Does not affect the
underlying
 %data.
 vnom = 4.16e3/sqrt(3);

 %% Plotting Bus Voltage Profiles for Each Bus
 %Commented out to improve runtime. When included, this section
plots
 %the pu voltage of phase 1 for all buses in the system. a smaller
 %seciton of busNames can be selected as the indexing limit in order
to
 %select specific buses to monitor.
 %{
 for n = 1:length(busNames)
 figure(n);
 v1 = busVoltages(1,n).voltage.v1 ./ vnom;
 time = busVoltages(1,n).voltage.time;
 v2 = busVoltages(25,n).voltage.v1 ./ vnom;
 v3 = busVoltages(50,n).voltage.v1 ./ vnom;
 v4 = busVoltages(75,n).voltage.v1 ./ vnom;
 v5 = busVoltages(100,n).voltage.v1 ./ vnom;

 subplot(3,1,j);
 sgtitle(sprintf('Bus %s p.u. Voltage W/out Voltage Regulators',
busNames(n)));
 plot(time, v1, time, v2,time, v3, time, v4,time, v5);
 xlim([0,24]);
 ylim([0.9,1.1]);
 title(plotTitle);

SDMAY20-57 44

 legend('1%','25%','50%','75%','100%', 'Location', 'southeast');
 end
 %}
 %% Plotting Losses as a function of PV percent Penetration
 k = n; % saves the number of buses for use in figure numbering,
freeing n for use as an indexing variable.
 figure(k+1);
 for n = 1:100
 MWLosses(n) = losses(n,j).MW;
 MVARLosses(n) = losses(n,j).MVAR;
 end
 subplot(3,1,j);
 sgtitle('MWh losses as a function of PV percent penetration');
 plot(1:1:100, MWLosses);
 xlim([0,100]);
 ylim([0,3]);
 title(plotTitle);

 figure(k+2);
 subplot(3,1,j);
 sgtitle('MVARh losses as a function of PV percent penetration');
 plot(1:1:100, MVARLosses);
 xlim([0,100]);
 ylim([0,5]);
 title(plotTitle);

 %Determines the max and min voltage in the system for each
solution.
 %Used to find the minimum PV penetration needed to get all voltages
 %within spec.
 maxV1(j,:) = max(max1');
 maxV2(j,:) = max(max2');
 maxV3(j,:) = max(max3');
 minV1(j,:) = min(min1');
 minV2(j,:) = min(min2');
 minV3(j,:) = min(min3');

end
minv1pu = minV1(3,1) ./ 2400;
k = 1;
while minv1pu <= 0.95
 k = k+1;
 minv1pu = minV1(3,k) ./ 2400
end

spotloadgen.m
%% Script description
%Converts a csv file from an IEEE test feeder describing spot loads

SDMAY20-57 45

%into a text file readable by OpenDSS. The load is attached directly to
the
%bus specified in the .csv file. This script is extensible to other
IEEE
%test feeder by updating filepaths.

clear all
slCharacterEncoding('Windows-1252');

loaddata = readcell('C:\may2020-57/feeder123/feeder123/spot load
data.csv');
DocOutput = fopen('C:\may2020-
57/123Node/OpenDSStxtfiles/spotloadData.txt','w');

zero48kvbuses = [610];

for n=5:size(loaddata,1)-1
 if ismember(loaddata{n,1}, zero48kvbuses)
 baseKv = 0.48;
 else
 baseKv = 4.16;
 end
 if loaddata{n, 2} == 'Y'
 conntype = "Wye";
 kV = baseKv/sqrt(3);
 else
 conntype = "Delta";
 kV = baseKv;
 end
 if loaddata{n,3} == "PQ"
 modeltype=1;
 elseif loaddata{n,3} == "I"
 modeltype=5;
 elseif loaddata{n,3} == "Z"
 modeltype=2;
 end
 bus1 = loaddata{n,1};
 if bus1 <10
 bus1str = strcat("00", num2str(bus1));
 elseif bus1<100
 bus1str = strcat("0", num2str(bus1));
 else
 bus1str = num2str(bus1);
 end

 kWA = loaddata{n,4};
 kVARA = loaddata{n,5};
 kWB = loaddata{n,6};
 kVARB = loaddata{n,7};
 kWC = loaddata{n,8};

SDMAY20-57 46

 kVARC = loaddata{n,9};

 if conntype == "Wye"
 if ~(kWA == kWB && kWA == kWC)
 formatSpecA1 = 'New load.%sas Phases=%d Bus1=%s.1 conn=%s
model=%d kv=%f kw=%f kVar=%f vminpu=0.85 \n';
 formatSpecB1 = 'New load.%sbs Phases=%d Bus1=%s.2 conn=%s
model=%d kv=%f kw=%f kVar=%f vminpu=0.85 \n';
 formatSpecC1 = 'New load.%scs Phases=%d Bus1=%s.3 conn=%s
model=%d kv=%f kw=%f kVar=%f vminpu=0.85 \n';
 else
 formatSpec3 = 'New load.%scs Phases=%d Bus1=%s conn=%s
model=%d kv=%f kw=%f kVar=%f vminpu=0.85 \n';
 end

 elseif conntype == "Delta"
 if ~(kWA == kWB && kWA == kWC)
 formatSpecA1 = 'New load.%sas Phases=%d Bus1=%s.1.2 conn=%s
model=%d kv=%f kw=%f kVar=%f vminpu=0.85 \n';
 formatSpecB1 = 'New load.%sbs Phases=%d Bus1=%s.2.3 conn=%s
model=%d kv=%f kw=%f kVar=%f vminpu=0.85 \n';
 formatSpecC1 = 'New load.%scs Phases=%d Bus1=%s.3.1 conn=%s
model=%d kv=%f kw=%f kVar=%f vminpu=0.85 \n';
 else
 formatSpec3 = 'New load.%scs Phases=%d Bus1=%s conn=%s
model=%d kv=%f kw=%f kVar=%f vminpu=0.85 \n';
 end
 end

 if kWA == 0
 formatSpecA1 = '';
 end
 if kWB == 0
 formatSpecB1 = '';
 end
 if kWC == 0
 formatSpecC1 = '';
 end
 if ~(kWA == kWB && kWA == kWC)

fprintf(DocOutput,formatSpecA1,bus1str,1,bus1str,conntype,modeltype,kV,
kWA,kVARA);

fprintf(DocOutput,formatSpecB1,bus1str,1,bus1str,conntype,modeltype,kV,
kWB,kVARB);

fprintf(DocOutput,formatSpecC1,bus1str,1,bus1str,conntype,modeltype,kV,
kWC,kVARC);
 else

SDMAY20-57 47

fprintf(DocOutput,formatSpec3,bus1str,3,bus1str,conntype,modeltype,kV,k
WA+kWB+kWC,kVARA+kVARB+kVARC);
 end
 fprintf(DocOutput, "\n");
end
fclose(DocOutput);

spotPVgen.m
function spotPVgen(percPen, spotLoadFileName, Model, Variable)
%DISTPVGEN creates PVSystem objects for each spot load
%
%percPen is the percentage of peak real load at each node the PV can
%supply e.g. percPen = 100 is all real loading covered by the solar
system
%
%spotLoadFileName is a string containing the file name of the
distributed
%loads to be covered e.g. 'exampleSpotLoadFilename'
%
%Model: 1=unity PF, 2=constPF, 3=constQ, 4=variablePF
%
%Variable is the applicable variable for the inverter control mode
% Unity Power Factor : any integer value
% Constant Power Factor : [0,1]
% Constant Q : Q as a factor of max inverter rating [0,1]
% For instance 0.25 is 25% of kVA for Q
injection
% Variable Q : Power factor determined by pervious solution
%
%Usage:
% spotPVgen(20,'spotloadData34Node.dss',1,0) adds 20% PV penetration
to
% the 34 node IEEE test feeder at unity power factor
% spotPVgen(20,'spotloadData34Node.dss',3,0.75) uses 75% of inverter
% rating for Q injection at each distibuted PVSystem
%{
percPen = 20;
distLoadFileName = 'spotloadData34Node.txt';
Model = 1;
Variable = 1;
%}
%Note that this script is not extensible to other systems due to
%idosyncrasies in how readtable parses the load .txt file.
 slCharacterEncoding('Windows-1252');
 pcPen = percPen/100;
 inputFile = fopen(spotLoadFileName, 'r');
 inputData = readtable(spotLoadFileName,'delimiter', '=');
 fclose('all');

SDMAY20-57 48

 output = fopen('C:\may2020-
57/34node/OpenDSStxtFiles/spotPV34Node.txt', 'w');% Sets the output to
be the PVsystem File
 [length, trash] = size(inputData);%Find the length of the input
data
 loadNamesPrelimCell = inputData.Var1;%Get the names of the buses
that PV is being attached to
 %Extract Name of each load object
 for i=1:length
 str = loadNamesPrelimCell{i};
 loadNames(i,1) = string(str(5:16));
 individualLoad = char(loadNames(i));
 PVname = string(individualLoad(6:10));
 PVSystemNames(i,1) = PVname;
 end

 %Extract phase number and connection type of PV
 loadConnPrelimCell = inputData.Var4;
 loadPhasePrelimCell = inputData.Var2;
 for i=1:length
 str = loadConnPrelimCell{i};
 loadConn(i,1) = string(str(1:9));
 individualConn = char(loadConn(i));
 PVConn = string(individualConn(1:3));
 PVSystemConns(i,1) = PVConn;
 end
 %Extract bus PV is connected to
 loadBusPrelimCell = inputData.Var3;
 for i=1:length
 str = loadPhasePrelimCell{i};
 str2 = loadBusPrelimCell{i};
 loadPhase = str(1);
 if loadPhase == '3'
 busCharNum = 3;
 numPhases(i) = 3;
 else
 busCharNum = 7;
 numPhases(i) = 1;
 end
 PVSystemBuses(i,1) = string(str2(1:busCharNum));
 end
 %Extract kV Rating of the PV
 %Note, variable names used to extract information from the text
file
 %are re-used
 loadBusPrelimCell = inputData.Var6;
 for i=1:length
 str = loadBusPrelimCell{i};
 loadBus(i,1) = string(str(1:10));
 individualBus = char(loadBus(i));

SDMAY20-57 49

 PVbus = string(individualBus(1:9));
 PVSystemkVstr(i,1) = PVbus;
 PVSystemkV(i,1) = str2double(PVSystemkVstr(i));
 end
 %Extract kW Rating of the PV
 %Note, variable names used to extract information from the text
file
 %are re-used
 loadBusPrelimCell = inputData.Var7;
 for i=1:length
 str = loadBusPrelimCell{i};
 loadBus(i,1) = string(str(1:10));
 individualBus = char(loadBus(i));
 PVbus = string(individualBus(1:9));
 PVSystemkWstr(i,1) = PVbus;
 PVSystemkW(i,1) = str2double(PVSystemkWstr(i));

 end

 for n=1:length
 %Parses the input to find the buses the loads are attached to
and the
 %kW and kVA rating of each
 bus1 = PVSystemBuses(n);
 kW = pcPen * PVSystemkW(n);
 kVA = kW;
 %Does preformatting based on Wye vs Delta Connection
 if PVSystemConns(n) == "Wye"
 conntype = "Wye";
 formatSpec = 'New PVSystem.%s Phases=%d Bus1=%s conn=%s
kv=%s kVA=%d Pmpp=%d\n~ effcurve=Myeff P-Tcurve=MyPvsT Daily=MyIrrad
TDaily=MyTemp';
 else
 conntype = "Delta";
 formatSpec = 'New PVSystem.%s Phases=%d Bus1=%s conn=%s
kv=%s kVA=%d Pmpp=%d\n~ effcurve=Myeff P-Tcurve=MyPvsT Daily=MyIrrad
TDaily=MyTemp';
 end

 switch Model
 case 1
 pf = 1;
 str = sprintf(' pf=%f \n',pf);
 formatSpec1 = strcat(formatSpec, str);
 case 2
 pf = Variable;
 str = sprintf(' pf=%f \n',pf);
 formatSpec1 = strcat(formatSpec, str);
 case 3
 kVAR = Variable * kVA;

SDMAY20-57 50

 str = sprintf(' kvar=%f \n', kVAR);
 formatSpec1 = strcat(formatSpec, str);
 case 4
 pf = Variable;
 str = sprintf(' pf=%f \n',pf);
 formatSpec1 = strcat(formatSpec, str);
 end

 fprintf(output, formatSpec1,PVSystemNames(n),numPhases(n),
PVSystemBuses(n), conntype, PVSystemkVstr(n), kVA, kW);
 fprintf(output, '\n');
 end
 fclose(output);
end

spotPVgen123Node.m
function spotPVgen123Node(percPen, spotLoadFileName, Model, Variable1,
Variable2)
%SPOTPVGEN123Node creates PVSystem objects for each spot load in the
123
%Node system
%
%percPen is the percentage of peak real load at each node the PV can
%supply e.g. percPen = 100 is all real loading covered by the solar
system
%
%spotLoadFileName is a string containing the file name of the
distributed
%loads to be covered e.g. 'exampleSpotLoadFilename'
%
%Model: 1=unity PF, 2=constPF, 3=constQ, 4=variablePF
%
%Variable is the applicable variable for the inverter control mode
% Unity Power Factor : any integer value
% Constant Power Factor : [0,1]
% Constant Q : Q as a factor of max inverter rating [0,1]
% For instance 0.25 is 25% of kVA for Q
injection
% Variable Q : Power factor determined by pervious solution
%
%Usage:
% spotPVgen(20,'spotloadData34Node.dss',1,0) adds 20% PV penetration
to
% the 34 node IEEE test feeder at unity power factor
% spotPVgen(20,'spotloadData34Node.dss',3,0.75) uses 75% of inverter
% rating for Q injection at each distibuted PVSystem
%{
percPen = 20;

SDMAY20-57 51

spotLoadFileName = 'spotloadData34Node.txt';
Model = 1;
Variable = 1;
%}
%Note that this script is not extensible to other systems due to
%idosyncrasies in how readtable parses the load .txt file.
 slCharacterEncoding('Windows-1252');
 pcPen = percPen/100;
 inputFile = fopen(spotLoadFileName, 'r');
 inputData = readtable(spotLoadFileName,'delimiter', '=');
 fclose('all');
 output = fopen('C:\may2020-57/123node/OpenDSStxtFiles/spotPV.txt',
'w');% Sets the output to be the PVsystem File
 [length, trash] = size(inputData);%Find the length of the input
data
 loadNamesPrelimCell = inputData.Var1;%Get the names of the buses
that PV is being attached to
 %Extract Name of each object
 for i=1:length
 str = loadNamesPrelimCell{i};
 loadNames(i,1) = string(str(5:14));
 individualLoad = char(loadNames(i));
 PVname = string(individualLoad(6:10));
 PVSystemNames(i,1) = PVname;
 end

 %Extract connection type of PV
 loadConnPrelimCell = inputData.Var4;
 for i=1:length
 str = loadConnPrelimCell{i};
 loadConn(i,1) = string(str(1:9));
 individualConn = char(loadConn(i));
 PVConn = string(individualConn(1:3));
 PVSystemConns(i,1) = PVConn;
 end
 %Extract bus PV is connected to
 loadBusPrelimCell = inputData.Var3;
 for i=1:length
 str = loadBusPrelimCell{i};
 loadBuss(i,1) = string(str(1:8));
 individualBus = char(loadBuss(i));
 if individualBus(7) == 'c'
 strend = 5;
 phases(i) = 1;
 elseif individualBus(7) == 'n'
 strend = 3;
 phases(i) = 3;
 else
 strend = 7;
 phases(i) = 1;

SDMAY20-57 52

 end
 PVbus = string(individualBus(1:strend));
 PVSystemBuses(i,1) = PVbus;
 end
 %Extract kV Rating of the PV
 %Note, variable names used to extract information from the text
file
 %are re-used
 loadBusPrelimCell = inputData.Var6;
 for i=1:length
 str = loadBusPrelimCell{i};
 loadBus(i,1) = string(str(1:8));
 individualBus = char(loadBus(i));
 PVbus = string(individualBus(1:8));
 PVSystemkVstr(i,1) = PVbus;
 PVSystemkV(i,1) = str2double(PVSystemkVstr(i));
 end
 %Extract kW Rating of the PV
 %Note, variable names used to extract information from the text
file
 %are re-used
 loadBusPrelimCell = inputData.Var7;
 for i=1:length
 str = loadBusPrelimCell{i};
 loadBus(i,1) = string(str(1:10));
 individualBus = char(loadBus(i));
 PVbus = string(individualBus(1:9));
 PVSystemkWstr(i,1) = PVbus;
 PVSystemkW(i,1) = str2double(PVSystemkWstr(i));

 end
 for n=1:length
 %Parses the input to find the buses the loads are attached to
and the
 %kW and kVA rating of each
 bus1 = PVSystemBuses(n);
 kW = pcPen * PVSystemkW(n);
 kVA = kW;
 %Does preformatting based on Wye vs Delta Connection
 if PVSystemConns(n) == "Wye"
 conntype = "Wye";
 formatSpec = 'New PVSystem.%s Phases=%d Bus1=%s conn=%s
kv=%s kVA=%d Pmpp=%d\n~ effcurve=Myeff P-Tcurve=MyPvsT Daily=MyIrrad
TDaily=MyTemp';
 else
 conntype = "Delta";
 formatSpec = 'New PVSystem.%s Phases=%d Bus1=%s conn=%s
kv=%s kVA=%d Pmpp=%d\n~ effcurve=Myeff P-Tcurve=MyPvsT Daily=MyIrrad
TDaily=MyTemp';
 end

SDMAY20-57 53

 switch Model
 case 1
 pf = 1;
 str = sprintf(' pf=%f \n',pf);
 formatSpec1 = strcat(formatSpec, str);
 case 2
 pf = Variable1;
 str = sprintf(' pf=%f \n',pf);
 formatSpec1 = strcat(formatSpec, str);
 case 3
 kVAR = Variable1 * kVA;
 str = sprintf(' kvar=%f \n', kVAR);
 formatSpec1 = strcat(formatSpec, str);
 case 4
 pf = Variable1;
 kVAR = Variable2;
 if pf == 0
 str = sprintf(' kvar=%f, \n', kVAR);
 end
 if kVAR == 0
 str = sprintf(' pf=%f, \n', pf);
 end
 formatSpec1 = strcat(formatSpec, str);
 end

 fprintf(output, formatSpec1,PVSystemNames(n),phases(n),
PVSystemBuses(n), conntype, PVSystemkVstr(n), kVA, kW);
 fprintf(output, '\n');
 end
 fclose(output);
end

SDMAY20-57 54

 MATLAB CODE FOR OPTIMIZATION

OpendDSSController.m

clc

clear all

close all

opengl software

delete C:/may2020-57/34Node/Results/lossmonitor.csv

warning off MATLAB:table:ModifiedAndSavedVarnames

%% Starting OpenDSS server

% Start the openDSS COM server

%NOTE: OpenDSS must be installed to be registered to windows for
use as a

%COM server. Simply copying the .exe file to the drive will not
work.

global DSSStartOk;

global DSSObj;

global DSSText;

[DSSStartOk, DSSObj, DSSText] = DSSStartup('C:\may2020-
57/34Node');

%% Fetching the active circuit name

DSSCircuit = DSSObj.ActiveCircuit;

%% Getting Bus Numbers for use in monitor data collection

SDMAY20-57 55

busNames = getBusNumbers('LineConfigs34Node.txt', 34);

%% Increasing PV penetration and changing mode of implementation

%This descrtibes the filepaths for the distributed and spot loads
in the

%system. THis allows integration of solar modeled as a percentage
of the

%customers at each node implementing solar individually.

distloadFilepath = 'C:\may2020-
57/34Node/OpenDSStxtfiles/distloadData34Node';

spotloadFilepath = 'C:\may2020-
57/34Node/OpenDSStxtfiles/spotloadData34Node';

%j represents the mode of operation of the solar inverters

%i is the percent integration

%n is used as an indexing variable for the coallation of data

for j = 1:32

 %The strings used in filenames and plot titles are defined
based on the

 %mode of operation of the silar inverters at the beginning of
each

 %solution set

 %{

 switch j

 case 1

 plotTitle = 'unity pf';

 lossName = 'unity';

 var = 1;

SDMAY20-57 56

 case 2

 plotTitle = 'const 0.85 pf';

 lossName = 'const_pf';

 var = 0.85;

 case 3

 plotTitle = 'const kvar';

 lossName = 'const_kvar';

 var = 0.5;

 otherwise

 plotTitle = 'var pf';

 end

 %}

 %Raising solar penetration from 1% to 100% in 1% increments

 doc34 = fopen('C:\may2020-
57/34Node/OpenDSStxtfiles/redirectPV.txt', 'w');

 str = sprintf('redirect optimizationPV%s.txt', busNames(j));

 fprintf(doc34, str);

 fclose('all');

 for i=1:1

 %Generation of the

 %distPVgen(i,distloadFilepath,1,var,34);

 %spotPVgen(i,spotloadFilepath,1,var);

 DSSText.Command = ('compile 34NodeTestFeeder.dss');

 losstable = readtable('C:\may2020-
57/34Node/Results/lossmonitor.csv');

 for n = 1:length(busNames)

 busVoltages(i,n).name = busNames(n);

SDMAY20-57 57

 busVoltages(i,n).voltage =
getMonitorData(busNames(n), '34NodeFeeder', 34);

 end

 for n = 1:height(losstable)

 nodeKWLosses(i+1,n) =
convertCharsToStrings(num2str(losstable.ZoneMaxKWLosses(n)));

 nodeKVARLosses(i+1,n) =
convertCharsToStrings(num2str(losstable.ZoneMaxKvarLosses(n)));

 end

 losses(i,j) = lossCalc(34);

 sprintf('%5.2f %% Complete',((j-1)+(i/100))*(100/3))

 End

Optimization.m

%% Variable equations
ak = tan(acos(.85));
sigma1 = 1;
sigma2 = 1;
sigma3 = 1;

mile = 5280;
R_300 = 1.30814;
R_301 = 1.89095;
R_302 = 2.73327;
R_303 = 2.73327;
R_304 = 1.89067;
X_300 = 1.34918;
X_301 = 1.42374;
X_302 = 1.48505;
X_303 = 1.48505;
X_304 = 1.4241;

ndlen = [2580; 1730; 32230; 5804; 37500; 29730; 10; 1710;...
 10210; 48150; 13740; 3030; 840; 20440; 520;
4900;...
 2020; 280; 860; 280; 1350; 3640; 530; 310; 10;...
 23330; 36830; 1620; 5830; 2680; 4860; 10560];
ndlen = ndlen./5280;

SDMAY20-57 58

R = [R_300*ndlen(1),R_300*ndlen(2),R_300*ndlen(3),...
 R_303*ndlen(4),R_300*ndlen(5),R_300*ndlen(6),...
 R_301*ndlen(7),R_302*ndlen(8),R_301*ndlen(9),...
 R_302*ndlen(10),R_302*ndlen(11),R_303*ndlen(12),...
 R_301*ndlen(13),R_301*ndlen(14),R_301*ndlen(15),...
 R_301*ndlen(16),R_301*ndlen(17),R_301*ndlen(18),...
 R_301*ndlen(19),R_301*ndlen(20),R_301*ndlen(21),...
 R_301*ndlen(22),R_301*ndlen(23),R_301*ndlen(24),...
 R_301*ndlen(25),R_303*ndlen(26),R_301*ndlen(27),...
 R_302*ndlen(28),R_301*ndlen(29),R_301*ndlen(30),...
 R_304*ndlen(31),R_300*ndlen(32)];
X = [X_300*ndlen(1),X_300*ndlen(2),X_300*ndlen(3),...
 X_303*ndlen(4),X_300*ndlen(5),X_300*ndlen(6),...
 X_301*ndlen(7),X_302*ndlen(8),X_301*ndlen(9),...
 X_302*ndlen(10),X_302*ndlen(11),X_303*ndlen(12),...
 X_301*ndlen(13),X_301*ndlen(14),X_301*ndlen(15),...
 X_301*ndlen(16),X_301*ndlen(17),X_301*ndlen(18),...
 X_301*ndlen(19),X_301*ndlen(20),X_301*ndlen(21),...
 X_301*ndlen(22),X_301*ndlen(23),X_301*ndlen(24),...
 X_301*ndlen(25),X_303*ndlen(26),X_301*ndlen(27),...
 X_302*ndlen(28),X_301*ndlen(29),X_301*ndlen(30),...
 X_304*ndlen(31),X_300*ndlen(32)];
for i = 1:32
 P(i) =
(busVoltages(1,i).voltage.v1(1)*cosd(busVoltages(1,i).voltage.van
gle(1)))...

*((busVoltages(1,i).voltage.i1(1))*cosd(busVoltages(1,i).voltage.
iangle(1)));
 Q(i) =
((busVoltages(1,i).voltage.v1(1)*sind(busVoltages(1,i).voltage.va
ngle(1))))...

*((busVoltages(1,i).voltage.i1(1))*sind(busVoltages(1,i).voltage.
iangle(1)));
 V(i) = busVoltages(1,i).voltage.v1(1);
 Pl(i) = (P(i)^2+Q(i)^2)*R(i)/(abs(V(i)))^2;
 Ql(i) = (P(i)^2+Q(i)^2)*X(i)/(abs(V(i)))^2;
end
 V(33) = V(32);
for i = 1:32
 Ak(i) = (R(i)*P(i))/V(i);
 Bk(i) = (R(i)*Q(i))/V(i);
 Ck(i) = (R(i))/V(i);
 Dk(i) = (X(i)*P(i))/V(i);
 Ek(i) = (X(i)*Q(i))/V(i);

SDMAY20-57 59

 Fk(i) = (X(i))/V(i);
 Gk(i) = (R(i)^2)/V(i+1);
 Hk(i) = (R(i)^2*P(i))/V(i+1);
 Ik(i) = X(i)^2/V(i+1);
 Jk(i) = (X(i)^2)/V(i+1);
 Kk(i) = (X(i)^2*Q(i))/V(i+1);
 Lk(i) = (R(i)*X(i)*Q(i))/V(i+1);
 Mk(i) = (R(i)*X(i))/V(i+1);
 VD_2(i) = (((R(i)*P(i)+X(i)*Q(i))^2)/V(i+1));

 Ppvk(i) = (((sigma1/Pl(i))*(Ak(i)+ak
Bk(i)))+((sigma2/Ql(i))(Dk(i)+ak
Ek(i)))+((sigma3/VD_2(i))(Hk(i)+ak
*Jk(i)+ak*Kk(i)+Lk(i))))/...

(((sigma1/Pl(i))*(Ck(i)+ak^2*Ck(i)))+((sigma2/Ql(i))*(Fk(i)+ak^2*
Fk(i)))+((sigma3/VD_2(i))*(Gk(i)+ak^2*Ik(i)+2*ak*Mk(i))));
%% calculate VDpv

 VDpart1(i) = (R(i)^2*(Ppvk(i)^2-
2*P(i)*Ppvk(i)))/abs(V(i+1))^2;
 VDpart2(i) = (X(i)^2*(ak^2*Ppvk(i)^2-
2*Q(i)*ak*Ppvk(i)))/abs(V(i+1))^2;
 VDpart3(i) = (R(i)*X(i)*(P(i)*ak*Ppvk(i)^2+Q(i)*Ppvk(i)-
ak*Ppvk(i)^2))/abs(V(i+1))^2;

 VD_2pv(i) = VDpart1(i) + VDpart2(i) - 2*VDpart3(i) + VD_2(i);
 IVD(i) = VD_2pv(i)/VD_2(i);

%% calculate Plpv

 Plpart1(i) = ((Ppvk(i)^2-2*P(i)*Ppvk(i))*R(i))/(abs(V(i))^2);
 Plpart2(i) = (ak^2*Ppvk(i)^2-
2*Q(i)*ak*Ppvk(i)*R(i))/(abs(V(i))^2);

 Plpv(i) = Plpart1(i) + Plpart2(i) + Pl(i);
 ILP(i) = Plpv(i)/Pl(i);

%% calculate Qlpv
 Qlpart1(i) = ((Ppvk(i)^2-2*P(i)*Ppvk(i))*X(i))/(abs(V(i))^2);
 Qlpart2(i) = ((ak^2*Ppvk(i)^2-
2*Q(i)*ak*Ppvk(i))*X(i))/(abs(V(i))^2);

 Qlpv(i) = Qlpart1(i) + Qlpart2(i) + Ql(i);
 ILQ(i) = Qlpv(i)/Ql(i);

SDMAY20-57 60

 IMO(i) = sigma1*ILP(i)+sigma2*ILQ(i)+sigma3*IVD(i);
End

GetMonitorData.m

function busVoltages = getMonitorData(busNum, openDSSCircuitName,
numNodes)

 filename =
sprintf('%dNode/Results/%s_Mon_%smonitor_1.csv',numNodes,
openDSSCircuitName, busNum);

 fopen(filename);

 monitorData = readtable(filename);

 hours = monitorData{:,1};

 sec = monitorData{:,2};

 v1 = monitorData{:,3};

 if monitorData.Properties.VariableNames{5} == 'I1'

 i1 = monitorData{:,5};

 vangle = monitorData{:,4};

 iangle = monitorData{:,6}-180;

 else

 i1 = monitorData{:,9};

 vangle = monitorData{:,4};

 iangle = monitorData{:,10}-180;

 end

 busVoltages.v2 = 0.*v1;

 busVoltages.i2 = 0.*i1;

 busVoltages.v3 = 0.*v1;

 busVoltages.i3 = 0.*i1;

 if monitorData.Properties.VariableNames{5} == 'V2'

 v2 = monitorData{:,5};

SDMAY20-57 61

 i2 = monitorData{:,11};

 busVoltages.v2 = v2;

 busVoltages.i2 = i2;

 end

 if monitorData.Properties.VariableNames{5} == 'V2'

 v3 = monitorData{:,7};

 i3 = monitorData{:,13};

 busVoltages.v3 = v3;

 busVoltages.i3 = i3;

 end

 busVoltages.v1 = v1;

 busVoltages.i1 = i1;

 busVoltages.vangle = vangle;

 busVoltages.iangle = iangle;

 len = length(hours);

 for i=1:len

 busVoltages.time(i,1) = hours(i) + sec(i)/3600;

 end

End

CreatePV.m

function createPV(Ppvk, buses)

 slCharacterEncoding('Windows-1252');

 strformat = 'New PVSystem.%s Phases=%d Bus1=%s conn=%s kv=%s
kVA=%d Pmpp=%d\n~ effcurve=Myeff P-Tcurve=MyPvsT Daily=MyIrrad
TDaily=MyTemp pf=0.85\n';

 for i=1:length(buses)

SDMAY20-57 62

 filepath = sprintf('C:\\may2020-
57/34Node/OpenDSStxtfiles/optimizationPV%s.txt', buses(i));

 docoutput = fopen(filepath, 'w');

 if ismember(buses(i), ['888', '890'])

 kv = 4.16;

 else

 kv = 24.9;

 end

 if ~ismember(buses(i), ['810', '818', '820', '822',
'826', '856', '864', '838'])

fprintf(docoutput,strformat,buses(i),3,buses(i),'delta',kv,
Ppvk(i)/1e3, Ppvk(i)/1e3);

 else

 strcat('!', strformat); fprintf(docoutput, '');

 end

 fclose('all');

 end

End

Losscalc.m

function output = lossCalc(numNodes)

 filename = sprintf('C:/may2020-
57/%dNode/Results/lossmonitor.csv', numNodes);

 doc = fopen(filename);

 lossData = readtable(filename);

 output.MW = sum(lossData.ZoneLossesKWh)/1e3;

 output.MVAR = sum(lossData.ZoneLossesKvarh)/1e3;

 fclose(doc);

SDMAY20-57 63

 delete(sprintf('C:/may2020-
57/%dNode/Results/lossmonitor.csv', numNodes))

end

